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Abstract

The Pacman bunches will experience two deleterious e�ects: tune shift and orbit dis-
placement. It is known that the tune shift can be compensated by arranging crossing
planes 90� relative to each other at successive interaction points (IPs). This paper gives
an analytical estimate of the Pacman orbit displacement for a single as well as for two
crossings. For the latter, it can be minimized by using equal phase advances from one
IP to another. In the LHC, this displacement is in any event small and can be neglected.

1 Introduction

It is believed that the attainable beam-beam tune shifts in hadron colliders may not be
limited by bunches in a standard environment, but by bunches that circulate past \gaps"
in the counter circulating beam, the so called Pacman bunches. Such bunches will su�er
tune shifts and orbit displacements di�erent from the \average" bunches. Therefore if the
machine is optimized for average bunches the Pacman bunches will not be in an optimized
environment and will su�er enhanced losses. However loss of a Pacman bunch will create
new Pacman bunches in the counter circulating beam, and over the course of time holes
will develop in both beams and eventually the beams may be destroyed. A circulating
bunch encounters the identical counter circulating bunches at points separated by half the
circumference. It is then possible to compensate the tune shift di�erences by arranging for
cancellation between the two points. For example, in the LHC, this is easily accomplished
for equal ��ip (�-function at the IP) by crossings planes at 90� relative to each other at the
two high luminosity IPs 1 and 5. Below we examine whether by an appropriate choice of
phase advance between the IPs we can also achieve cancellation for the orbit displacements.
Obviously if the crossings are successively in horizontal and vertical planes no cancellation
are possible. However if two horizontal or vertical crossing planes are used, or if the probably
superior tilted plane geometry is used, there is an optimum phase di�erence that minimizes
but doesn't cancel the orbit displacements at the IPs. This phase advance is calculated in the
following section. Not, perhaps, surprisingly it corresponds to equal phase advances between
the two IPs for the two half sectors of the machine. We also calculate the displacement for a
single horizontal or vertical crossing and �nd that it gives an almost identical displacement
to that found for two crossings symmetrically related in phase. A further point should be
mentioned. Bunches that do not encounter an opposing head-on bunch collision should be
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quite stable. Therefore the gaps in the counter circulating beam which straddle the IP are
not destructive and only gaps that lie on one side or the other of the IP are destructive.
(However a bunch that does not su�er a head-on collision with the counter circulating beam
does not contribute to the luminosity and therefore even if stable is of little interest.)

Finally we examine the physical magnitude of the expected orbit e�ect in the LHC. We �nd
them to be relatively small compared with the degradation of the beam-beam limit due to
the additional Pacman tune spread.

2 Theoretical Derivation

The derivation uses a number of straightforward properties for �nding eigen solutions for
the equilibrium orbit in a machine. We assume a machine with two identical IRs, A and
B, at the start and midpoint of the circumference around the machine. The IPs are at �
(slope of the �-function) equal to zero, and are assumed to have equal ��ip. In units of x=��ip
the transfer matrix R around the machine from IP A back to IP A is given by

R =

�
cos(�) sin(�)
�sin(�) cos(�)

�
(1)

where � is the phase shift around the machine. We shall use the shorthand notation

R = M(�) (2)

and this has the standard property that

M(�)M(�) = M(�+ �) (3)

Orbit displacements are only signi�cant for bunches that su�er head-on collisions. The
missing \Pacman gap" in the counter circulating beam can then be encountered before
collision (\IN" con�guration) or after collision (\OUT" con�guration). In a single passage
across the IR to the IP the gap will cause the bunch to deviate from its equilibrium orbit
by a de
ection as it passes the missing bunch(es). To a good approximation the missing
parasitic crossings are 90� in phase away from the IP and the net e�ect is for there to be a
transverse displacement at the IP and a close to zero angular displacement. In units of the
net displacement (see subsection 2.4 below) we can represent the single pass displacement
as a vector, V ,

V '

�
1
�

�
(4)

� ' ��ip=L (5)

where L is the distance of the missing bunch from the IP.

We assume that the IPs are separated in phase by �. We will give a detailed derivation
�rst for the IN case and for the equilibrium displacement x at IP A (the �rst IP), which is
de�ned as

X =

�
x

�

�
(6)
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Then in matrix notation the eigen solution for X is found by equating the X at each
sequential turn with the X at the previous turn. We then �nd

X = M(�)X +M(�� �)V + V (7)

This can be rearranged as
�
M(0)�M(�)

�
X = M(�� �)V +M(0)V (8)

X is then speci�ed by

X =
�
M(0)�M(�)

�
�1
�
M(�� �) +M(0)

�
V (9)

2.1 Evaluation of Orbit Displacement X

The previous result can be simpli�ed by noting that the term

M(0)�M(�) =

�
1� cos(�) �sin(�)
sin(�) 1� cos(�)

�
(10)

or

M(0)�M(�) = 2sin(
�

2
)

�
sin(�

2
) �cos(�

2
)

cos(�
2
) sin(�

2
)

�
(11)

Taking the inverse

�
M(0)�M(�)

�
�1

=
1

2sin(�
2
)

�
sin(�

2
) cos(�

2
)

�cos(�
2
) sin(�

2
)

�
(12)

This in turn can be written as

�
M(0)�M(�)

�
�1

=
�1

2sin(�
2
)
M
�
�
�

2
�
�

2

�
(13)

Substituting this into Eq. (9) we get

X =
�1

2sin(�
2
)

�
M
��
2
� � �

�

2

�
+M

�
�
�

2
�
�

2

��
V = SV (14)

where S is a matrix de�ned by the above equation.

A small change in the angular component, �, ofX has an insigni�cant e�ect on the de
ection
at the IP, and the only quantity of interest is the spatial component, x, of X . Remembering
V is approximated by Eq. (4) and therefore

x ' S11 + �S12 (15)

or substituting we obtain the simple and �nal result

x '
�1

2sin(�
2
)

�
�sin(

�

2
) + sin(

�

2
� �)� �

�
cos(

�

2
) + cos(

�

2
� �)

��
(16)
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2.2 Results for Two Crossings

The previous subsection evaluated the o�set at IP A for a gap in parasitic crossings on
the incoming side of the IP. There are four cases, incoming and outgoing gaps and IPs A
and B. We summarize the basic equations and solutions for the four cases. The results
are evaluated for same sign crossing angles at the two IPs. The four additional cases for
opposite sign crossings can be found by replacing � by � + �. These additional cases are
degenerate to an interchange of IPs A and B and therefore do not modify the following
results.

IN for IP A

X =
�
M(0)�M(�)

�
�1
�
M(�� �) +M(0)

�
V (17)

IN for IP B

X =
�
M(0)�M(�)

�
�1
�
M(�) +M(0)

�
V (18)

OUT for IP A

X =
�
M(0)�M(�)

�
�1
�
M(�) +M(�� �)

�
V (19)

OUT for IP B

X =
�
M(0)�M(�)

�
�1
�
M(�) +M(�)

�
V (20)

The results evaluated for these cases are

xinA '
�1

2sin(�
2
)

�
�sin(

�

2
) + sin(

�

2
� �)� �

�
cos(

�

2
) + cos(

�

2
� �)

��
(21)

xinB '
�1

2sin(�
2
)

�
�sin(

�

2
)� sin(

�

2
� �)� �

�
cos(

�

2
) + cos(

�

2
� �)

��
(22)

xoutA '
�1

2sin(�
2
)

�
+sin(

�

2
) + sin(

�

2
� �) + �

�
cos(

�

2
) + cos(

�

2
� �)

��
(23)

xoutB '
�1

2sin(�
2
)

�
+sin(

�

2
)� sin(

�

2
� �) + �

�
cos(

�

2
) + cos(

�

2
� �)

��
(24)

Using the approximation that � is small, to order � terms in cos can be neglected. We then
obtain the following simple results.

xinA + xinB ' +1 (25)

and
xoutA + xoutB ' �1 (26)

Equivalent, for either the in or out case to

jxAj and/or jxBj �
1

2
(27)
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For the symmetric case where � = �
2

jxAj = jxBj =
1

2
(28)

The symmetric case represents the optimum con�guration.

2.3 Results for a Single IP

If the crossing planes are 90� relative to each other, horizontal or vertical, then the orbit
displacements in the two planes are orthogonal and we need only consider displacements
from one plane. For instance assuming horizontal crossing for IP A and vertical crossing
for IP B the horizontal orbit displacement at IP A will be given at A from

XA = M(�)XA +M(0)V (29)

equivalent to

XA =
�
M(0)�M(�)

�
�1

V (30)

or evaluating as in the previous subsection

xA =
1

2

�
1 + � � cot(

�

2
)
�

(31)

or neglecting terms in �

xA '
1

2
(32)

The corresponding displacement at B is

XB = M
��
2

�
XA (33)

and again evaluating as before for equal phases A to B and B to A

XB =
�1

2sin(�
2
)
M
��
2

�
M
�
�
�

2
�
�

2

�
V (34)

or equivalently

xB =
�

2sin(�
2
)
' 0 (35)

Thus again in units of V the de
ection at the IPs is one half, identical to the previous result.

2.4 Numerical Results

The units of V are easily evaluated for the LHC. The orbit displacement at the IP for a
single pass is [1]

�xs =
8�Np��ho
�cross

(36)

where �xs is in units of �x (the rms beam transverse size), ��ho is the head-on tune shift
per IP, �cross is the full crossing angle in units of �x0 (the rms beam angular size), and Np
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is the number of parasitic crossings. For multipasses the displacement with equal phasing
between IPs is 1

2
�xs.

We approximate Np as being equal to the number of crossing points from the IP to an
e�ective point in the separation magnets, namely eighteen e�ective crossings. Orbit dis-
placement only destroys bunches that collide head-on with the counter circulating beam,
and thus a worst case is for all the bunches in the counter circulating beams to be missing
either prior or after the IP. If destructive bunch loss required all bunches to be missing on
one side of the IP, then only a single bunch would be lost in the counter circulating beam
(insu�cient to destabilize the circulating beam) and the beams would remain stable after
the loss of a single bunch. To propagate, destructive bunch loss must occur when at least
half the bunches are missing, i.e., for a propagating Pacman e�ect the bunches must be
unstable for Np � 9.

Using a �ip of 50 cm, an emittance of 5�10�8 cm-rad, a �cross of 200 �rad, a ��ho of 0.0034
per IP, and Np equal to 9, the spatial component of 1

2
V (the symmetric case) is 0.06 �x or

1 �m for a beam with a �x of 16 �m. Such an orbit displacement is very small and will
contribute minimally to instability. For all practical purposes it is negligible and the orbit
displacement will not contribute to any appreciable extent to a Pacman e�ect. Of course
the additional tune spread from Pacman bunches, comparable to the head-on beam beam
tune shift does play a major role and successive crossing planes rotated by 90� will be very
helpful.

Herr has previously investigated the impact of the Pacman e�ect on LHC running. [2] Our
results agree with his with the exception of our distinction of a localized loss of bunches
(where we agree with Herr) and a runaway Pacman e�ect, where we require a factor two
times higher threshold. Herr points out that if more IPs than IPs 1 and 5 are run simultane-
ously at high luminosity the Pacman orbit e�ects are substantial and might require a bunch
by bunch feedback control system. However it is presently envisaged that high LHC lumi-
nosity running will only occur simultaneously for IPs 1 and 5. Therefore with symmetric
phasing both our and Herr's results show feedback control of Pacman orbit displacements
will be unnecessary.

3 Conclusions

The cases of interest described above are for successive horizontal or vertical crossings at
the high luminosity IPs, or for 45� tilted crossings. For Pacman bunches the most impor-
tant deleterious e�ects are associated with tune shifts. The Pacman tune shift e�ects are
eliminated by using crossing planes 90� relative to each other, and therefore in all proba-
bility the candidates for crossing geometries are \horizontal/vertical" or tilted planes. The
horizontal/vertical case is not modi�ed by interferences between the two IPs and therefore
for a given tune all phase advances between IPs are equally acceptable. For the tilted planes
the optimum choice to minimize orbit excursions is to use equal phase advances from IPs
1!5 and from IPs 5!1.
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In any event the orbit displacement contribution to Pacman instability is small and, even
for a 200 �rad \worst case" crossing angle, can for all e�ective purposes be regarded as
negligible and close to zero.
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